:高二数学二元一次不等式组知识点
高二数学二元一次不等式组知识点
【定义】
有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:一般的,二元一次方程组的两个一元二次方程的公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
【消元的方法】
消元的方法有两种:
代入消元法
例:解方程组 :
x+y=5①
6x+13y=89②
解:由①得
x=5-y③
把③代入②,得
6(5-y)+13y=89
即 y=59/7
把y=59/7代入③,得
x=5-59/7
即 x=-24/7
∴ x=-24/7
y=59/7 为方程组的解
我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。
加减消元法
例:
文档为doc格式