:高二文科数学 2. 1.1离散型随机变量 教案

2. 1.1离散型随机变量

【教学目标】1。理解随机变量的意义;

2。学会区分离散型与非离散型随机变量,并能举出离散性随机变量

的例子;

3。理解随机变量所表示试验结果的含义,并恰当地定义随机变量。

【教学重难点】

教学重点:随机变量、离散型随机变量、连续型随机变量的意义

教学难点:随机变量、离散型随机变量、连续型随机变量的意义

【教学过程】

一、复习引入:

展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲

某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;

某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示

在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?

观察,概括出它们的共同特点

二、讲解新课:

思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?

掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2。1一1 ) 。

在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.

定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y,,,… 表示.

思考2:随机变量和函数有类似的地方吗?

随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随

以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式


上一篇: 高一数学 §3.1 独立性检验(2) 教案

下一篇: 高中文科数学2.1.2离散型随机变量的分布列 教案

最新文章

热门文章

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com

Top