:人教版高中数学必修三(教案)3.1.1 随机事件的概率
第一课时 3。1。1 随机事件的概率
教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A出现的频率的意义;正确理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;利用概率知识正确理解现实生活中的实际问题。
教学重点:事件的分类;概率的定义以及概率和频率的区别与联系。
教学难点:随机事件及其概率,概率与频率的区别和联系。
教学过程:
1。 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?
2。 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性。这其中蕴涵什么意思?
二、讲授新课:
1。 教学基本概念:
① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电
② 必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
③ 不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
④ 确定事件:必然事件和不可能事件统称为相对于条件S的确定事件; 随机事件:……
⑤ 频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率;
⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。
2。 教学例题:
① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?
(1)如果都是实数,;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签。
② 出示例2 某射手在同一条件下进
文档为doc格式