:2020年高考数学课时06函数的解析式和定义域单元滚动精准测试卷文


课时06 函数的解析式和定义域
模拟训练(分值:60分 建议用时:30分钟)
1.函数y=的定义域是(  )
A.{x|x<0} B.{x|x>0}
C.{x|x<0且x≠-1} D.{x|x≠0且x≠-1,x∈R}
【答案】C
【解析】依题意有,解得x<0且x≠-1,故定义域是{x|x<0且x≠-1}.
2.已知函数f(x)=lg(4-x)的定义域为M,g(x)=的定义域为N,则M∩N=( )
A.M B.N
C.{x|2≤x<4} D.{x|-2≤x<4}
【答案】B

3.已知函数f(x)=,则函数f[f(x)]的定义域为(  )
A.{x|x≠-1}
B.{x|x≠-2}
C.{x|x≠-1且x≠-2}
D.{x|x≠-1或x≠-2}
【答案】C
【解析】f[f(x)]=,由x+1≠0且+1≠0,得x≠-1且x≠-2.
4.奇函数在上的解析式是,则在上的函数解析式是 ( )
A. B.
C. D.
【答案】B
【解析】当时,,由于函数是奇函数,故。
5. 已知f(+1)=lgx,则f(x)=________.
【答案】lg,x∈(1,+∞)

6.若函数f(x)=的定义域为R,则实数m的取值范围是________.
【答案】[0,)
【解析】若m=0,则f(x)=的定义域为R;若m≠0,则Δ=16m2-12m<0,得0【失分点分析】当二次项系数是参数时,应讨论是否等于0,
7.设二次函数f(x)满足f(x-2)=f(-x-2),且图象在y轴上的截距为1,被x轴截得的线段长为2,则f(x)的解析式为 .
【答案】f(x)=x2+2x+1.
【解析】设f(x)=ax2+bx+c(a≠0).由f(x-2)=f(-x-2)得4a-b=0.①
又∵|x1-x2|==2,∴b2-4ac=8a2.②安全
又已知c=1.③
由①、②、③解得b=2,a=,c=1,
∴f(x)=x2+2x+1.
[知识拓展]求
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式


上一篇: 2020年高考数学课时07函数的值域和最值单元滚动精准测试卷文

下一篇: 2020年高考数学课时05函数及其表示单元滚动精准测试卷文

最新文章

热门文章

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com

Top