:高中数学人教A版选修1-1学业分层测评5:全称量词与存在量词
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列命题是“∀x∈R,x2>3”的表述方法的是( )
A.有一个x∈R,使得x2>3
B.对有些x∈R,使得x2>3
C.任选一个x∈R,使得x2>3
D.至少有一个x∈R,使得x2>3
【答案】 C
2.下列四个命题中,既是全称命题又是真命题的是( )
A.斜三角形的内角是锐角或钝角
B.至少有一个实数x,使x2>0
C.任意无理数的平方必是无理数
D.存在一个负数x,使>2
【解析】 只有A,C两个选项中的命题是全称命题,且A显然为真命题.因为是无理数,而()2=2不是无理数,所以C为假命题.
【答案】 A
3.给出四个命题:①末位数是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x,x>0;④对于任意实数x,2x+1是奇数.下列说法正确的是( )
A.四个命题都是真命题
B.①②是全称命题
C.②③是特称命题
D.四个命题中有两个是假命题
【答案】 C
4.(2014·湖南高考)设命题p:∀x∈R,x2+1>0,则¬p为( )
A.∃x0∈R,x+1>0 B.∃x0∈R,x+1≤0
C.∃x0∈R,x+1<0> 【解析】 根据全称命题的否定为特称命题知B正确.
【答案】 B
5.下列四个命题:
p1:∃x∈(0,+∞),x<x;
p2:∃x∈(0,1),x>x;
p3:∀x∈(0,+∞),x>x;
p4:∀x∈,x<x.
其中的真命题是( )
A.p1,p3 B.p1,p4
C.p2,p3 D.p2,p4
【解析】 取x=,
则x=1,x=log32<1,p2正确.
当x∈时,x<1,而x>1,p4正确.
【答案】 D
二、填空题
6.(2016·大同二诊)已知命题p:“∃x0∈R,sin x
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列命题是“∀x∈R,x2>3”的表述方法的是( )
A.有一个x∈R,使得x2>3
B.对有些x∈R,使得x2>3
C.任选一个x∈R,使得x2>3
D.至少有一个x∈R,使得x2>3
【答案】 C
2.下列四个命题中,既是全称命题又是真命题的是( )
A.斜三角形的内角是锐角或钝角
B.至少有一个实数x,使x2>0
C.任意无理数的平方必是无理数
D.存在一个负数x,使>2
【解析】 只有A,C两个选项中的命题是全称命题,且A显然为真命题.因为是无理数,而()2=2不是无理数,所以C为假命题.
【答案】 A
3.给出四个命题:①末位数是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x,x>0;④对于任意实数x,2x+1是奇数.下列说法正确的是( )
A.四个命题都是真命题
B.①②是全称命题
C.②③是特称命题
D.四个命题中有两个是假命题
【答案】 C
4.(2014·湖南高考)设命题p:∀x∈R,x2+1>0,则¬p为( )
A.∃x0∈R,x+1>0 B.∃x0∈R,x+1≤0
C.∃x0∈R,x+1<0> 【解析】 根据全称命题的否定为特称命题知B正确.
【答案】 B
5.下列四个命题:
p1:∃x∈(0,+∞),x<x;
p2:∃x∈(0,1),x>x;
p3:∀x∈(0,+∞),x>x;
p4:∀x∈,x<x.
其中的真命题是( )
A.p1,p3 B.p1,p4
C.p2,p3 D.p2,p4
【解析】 取x=,
则x=1,x=log32<1,p2正确.
当x∈时,x<1,而x>1,p4正确.
【答案】 D
二、填空题
6.(2016·大同二诊)已知命题p:“∃x0∈R,sin x
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式