:2019届高考数学二轮复习专题--导数与函数综合问题(带答案)






 
1.利用导数研究函数的性质,以含指数函数、对数函数、三次有理函数为载体,研究函数的单调性、极值、最值,并能解决简单的问题.
2.在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以含指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题.
 
1.导数的几何意义
函数f(x) 在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).
2.四个易误导数公式
(1)(sin x)′=cos x;
(2)(cos x)′=-sin x;
(3)(ax)′=axln a(a>0,且a≠1);
(4)(logax)′=1xln a(a>0,且a≠1,x>0).
3.利用导数研究函数的单调性
(1)导数与函数单调性的关系.
①f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.
②f′(x)≥0是f(x)为增函数的必要不充分条件,如果函数在某个区间内恒有f′(x)=0时,则f(x)为常数函数.
(2)利用导数研究函数单调性的方法.
①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f′(x)>0或f′(x)<0.
②若已知函数的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解.
4.利用导数研究函数的极值、最值
(1)若在x0附近左侧f′(x)>0,右侧f′(x)<0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f&prime
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式


上一篇: 2019届高考数学二轮复习专题--三角函数(有答案)

下一篇: 2019届高考数学二轮复习专题--不等式(附答案)

最新文章

热门文章

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com

Top