:高二数学人教A版选修4-5学业分层测评1 Word版含答案
学业分层测评(一)
(建议用时:45分钟)
[学业达标]
一、选择题
1.设a,b,c,d∈R,且a>b,c>d,则下列结论正确的是( )
A.a+c>b+d B.a-c>b-d
C.ac>bd D.>
【解析】 a>b,c>d,∴a+c>b+d.
【答案】 A
2.设a,b∈R,若a-|b|>0,则下列不等式中正确的是( )
A.b-a>0 B.a3+b3<0
C.b+a>0 D.a2-b2<0
【解析】 a-|b|>0⇒|b|<a⇒-a<b<a⇒a+b>0.故选C.
【答案】 C
3.若a<b<0,则下列不等式不能成立的是( )
A.> B.2a>2b
C.|a|>|b|>0 D.>
【解析】 考查不等式的基本性质及其应用.取a=-2,b=-1验证即可求解.
【答案】 B
4.已知a<0,-1<b<0,那么( )
A.a>ab>ab2 B.ab2>ab>a
C.ab>a>ab2 D.ab>ab2>a
【解析】 ab2-ab=ab(b-1),
a<0,-1<b<0,
∴b-1<0,ab>0,∴ab2-ab<0,即ab2<ab;
又ab2-a=a(b2-1),
-1<b<0,∴b2<1,
即b2-1<0.又a<0,
∴ab2-a>0,即ab2>a.
故ab>ab2>a.
【答案】 D
5.设a,b为实数,则“0<ab<1”是“b<”的( )
【导学号:32750004】
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 0<ab<1,
当a<0且b<0时可推得b>,
所以“0<ab<1”不是“b<”的充分条件, ①
反过来,若b<,
当b
(建议用时:45分钟)
[学业达标]
一、选择题
1.设a,b,c,d∈R,且a>b,c>d,则下列结论正确的是( )
A.a+c>b+d B.a-c>b-d
C.ac>bd D.>
【解析】 a>b,c>d,∴a+c>b+d.
【答案】 A
2.设a,b∈R,若a-|b|>0,则下列不等式中正确的是( )
A.b-a>0 B.a3+b3<0
C.b+a>0 D.a2-b2<0
【解析】 a-|b|>0⇒|b|<a⇒-a<b<a⇒a+b>0.故选C.
【答案】 C
3.若a<b<0,则下列不等式不能成立的是( )
A.> B.2a>2b
C.|a|>|b|>0 D.>
【解析】 考查不等式的基本性质及其应用.取a=-2,b=-1验证即可求解.
【答案】 B
4.已知a<0,-1<b<0,那么( )
A.a>ab>ab2 B.ab2>ab>a
C.ab>a>ab2 D.ab>ab2>a
【解析】 ab2-ab=ab(b-1),
a<0,-1<b<0,
∴b-1<0,ab>0,∴ab2-ab<0,即ab2<ab;
又ab2-a=a(b2-1),
-1<b<0,∴b2<1,
即b2-1<0.又a<0,
∴ab2-a>0,即ab2>a.
故ab>ab2>a.
【答案】 D
5.设a,b为实数,则“0<ab<1”是“b<”的( )
【导学号:32750004】
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 0<ab<1,
当a<0且b<0时可推得b>,
所以“0<ab<1”不是“b<”的充分条件, ①
反过来,若b<,
当b
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式