:高中数学人教A版选修1-1学业分层测评16:函数的单调性与导数
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.函数y=f(x)的图象如图3-3-4所示,则导函数y=f′(x)的图象可能是( )
图3-3-4
【解析】 由函数y=f(x)的图象可知,在区间(-∞,0)和(0,+∞)上,函数f(x)均为减函数,故在区间(-∞,0)和(0,+∞)上,f′(x)均小于0,故选D.
【答案】 D
2.函数f(x)=2x-sin x在(-∞,+∞)上( )
A.是增函数 B.是减函数
C.有最大值 D.有最小值
【解析】 cos x≤1,∴f′(x)=2-cos x>0恒成立,∴f(x)在(-
∞,+∞)上为增函数.
【答案】 A
3.函数y=(3-x2)ex的单调递增区间是( )
A.(-∞,0) B.(0,+∞)
C.(-∞,-3)和(1,+∞) D.(-3,1)
【解析】 y′=-2xex+(3-x2)ex=(-x2-2x+3)ex,令(-x2-2x+3)ex>0,由于ex>0,则-x2-2x+3>0,解得-3<x br=>【答案】 D
4.已知函数f(x)=+ln x,则有( )
A.f(2)<f b.f(e)<f(2)<f(3)= br=>C.f(3)<f d.f(e)<f(3)<f(2)= br=>【解析】 因为在定义域(0,+∞)上,f′(x)=+>0,所以f(x)在(0,+∞)上是增函数,所以有f(2)<f br=>【答案】 A
5.(2014·全国卷Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是( )
A.(-∞,-2] B.(-∞,-1]
C.[2,+∞) D.[1,+∞)
【解析】 由于f′(x)=k-,f(x)=kx-ln x在区间(
(建议用时:45分钟)
[学业达标]
一、选择题
1.函数y=f(x)的图象如图3-3-4所示,则导函数y=f′(x)的图象可能是( )
图3-3-4
【解析】 由函数y=f(x)的图象可知,在区间(-∞,0)和(0,+∞)上,函数f(x)均为减函数,故在区间(-∞,0)和(0,+∞)上,f′(x)均小于0,故选D.
【答案】 D
2.函数f(x)=2x-sin x在(-∞,+∞)上( )
A.是增函数 B.是减函数
C.有最大值 D.有最小值
【解析】 cos x≤1,∴f′(x)=2-cos x>0恒成立,∴f(x)在(-
∞,+∞)上为增函数.
【答案】 A
3.函数y=(3-x2)ex的单调递增区间是( )
A.(-∞,0) B.(0,+∞)
C.(-∞,-3)和(1,+∞) D.(-3,1)
【解析】 y′=-2xex+(3-x2)ex=(-x2-2x+3)ex,令(-x2-2x+3)ex>0,由于ex>0,则-x2-2x+3>0,解得-3<x br=>【答案】 D
4.已知函数f(x)=+ln x,则有( )
A.f(2)<f b.f(e)<f(2)<f(3)= br=>C.f(3)<f d.f(e)<f(3)<f(2)= br=>【解析】 因为在定义域(0,+∞)上,f′(x)=+>0,所以f(x)在(0,+∞)上是增函数,所以有f(2)<f br=>【答案】 A
5.(2014·全国卷Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是( )
A.(-∞,-2] B.(-∞,-1]
C.[2,+∞) D.[1,+∞)
【解析】 由于f′(x)=k-,f(x)=kx-ln x在区间(
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式