:人教版九年级上册21.2.2 公式法教案

第6课时 21。2。2 公式法

教学内容

1.一元二次方程求根公式的推导过程;

2.公式法的概念;

3.利用公式法解一元二次方程.

教学目标

理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.

重难点关键

1.重点:求根公式的推导和公式法的应用.

2.难点与关键:一元二次方程求根公式法的推导.

教学过程

一、 复习引入

1. 前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

(1)x2=4 (2)(x-2) 2=7

提问1 这种解法的(理论)依据是什么?

提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)

2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)

(学生活动)用配方法解方程 2x2+3=7x

(老师点评)略

总结用配方法解一元二次方程的步骤(学生总结,老师点评).

(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.

二、探索新知

用配方法解方程

(1) ax2-7x+3 =0 (2)a x2+bx+3=0

(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=(这个方程一定有解吗?什么情况下有解?)

分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:a

以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式


上一篇: 人教版九年级上册21.2.3 因式分解法教案

下一篇: 人教版九年级上册1.2.1 配方法(2)教案

最新文章

热门文章

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com

Top