:人教版九年级上册1.2.1 配方法(1)教案

第4课时 22。2。1 配方法(1)

教学内容

间接即通过变形运用开平方法降次解方程.

教学目标

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.

重难点关键

1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

教学过程

一、复习引入

(学生活动)请同学们解下列方程

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±或mx+n=±(p≥0).

如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面三个方程的解法呢?

问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.

(2)不能.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9

左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5

解一次方程→x1=2,x2= -8

可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m。

像上面的解题方法,通

以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式


上一篇: 人教版九年级上册1.2.1 配方法(2)教案

下一篇: 人教版九年级上册21.2.1 配方法教案

最新文章

热门文章

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com

Top