:鲁教版八年级数学上册第二章知识点汇总
鲁教版八年级数学上册第二章知识点汇总
第二章 勾股定理
2.1探索勾股定理
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 +b2=c2 ,即直角三角形两直角边的平方和等于斜边的平方。(一个直角三角形,以它的两直角边为边长所作的两正方形面积之和等于以它的斜边为边长所作的正方形的面积)
注意:电视机有多少英寸,指的是电视屏幕对角线的长度。
2.2勾股数
1.勾股定理的逆定理:若三角形的三边长a,b,c满足a2 +b2=c2,则该三角形是直角三角形。
在∆ABC中, a,b,c为三边长,其中 c为最大边,
若a2 +b2=c2,则∆ABC为直角三角形;
若a2 +b2>c2 ,则∆ABC为锐角三角形;
若a2 +b2<c2 ,则∆ABC为钝角三角形。
2.勾股数:满足a2 +b2=c2 的三个正整数(即能构成一个直角三角形三边的一组正整数),称为勾股数(勾股数是正整数)。
规律:一组能构成直角三角形的三边的数,同时扩大或缩小同一倍数(即同乘以或除以同一个正数),仍能够成直角三角形。
一组勾股数的倍数不一定是勾股数,因为其倍数可能是小数,只有整数倍数才仍是勾股数。
常用勾股数:3,4,5(三四五) 9,12,15(3,4,5的三倍) 5,12,13(5.12记一生)
8,15,17(八月十五在一起) 6,8,10(3,4,5的两倍) 7,24,25(企鹅是二百五)
勾股数须知:连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,10
文档为doc格式