:八年级数学下册第十七章勾股定理17-1勾股定理第2课时勾股定理的应用教案
一、情境导入
如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
二、合作探究
探究点一:勾股定理的实际应用
【类型一】 勾股定理在实际问题中的应用
如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?
解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.
解:在Rt△ABC中,BC=13米,AC=5米,则AB==12米.6秒后,B′C=13-0.5×6=10米,则AB′==5(米),则船向岸边移动的距离为(12-5)米.
方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.
如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
二、合作探究
探究点一:勾股定理的实际应用
【类型一】 勾股定理在实际问题中的应用
如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?
解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.
解:在Rt△ABC中,BC=13米,AC=5米,则AB==12米.6秒后,B′C=13-0.5×6=10米,则AB′==5(米),则船向岸边移动的距离为(12-5)米.
方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式