:2019年中考数学复习--与圆有关的位置关系(有解析)

第30讲 与圆有关的位置关系
 
1. (2012,河北)如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间为t s.
(1)求点C的坐标;
(2)当∠BCP=15°时,求t的值;
(3)以点P为圆心,PC的长为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.
 
第1题图
【思路分析】 (1)由∠CBO=45°,∠COB为直角,得∠BCO=45°.所以∠BCO=∠CBO.可得OC=OB=3,然后由点C在y轴的正半轴可以确定点C的坐标.(2)需要对点P的位置进行分类讨论.①当点P在点B右侧时,由∠BCO=45°,用∠BCO-∠BCP求出∠PCO=30°.又OC=3,在Rt△POC中,求出OP的长.由PQ=OQ+OP求出运动的总路程,即可求出此时的时间t.②当点P在点B左侧时,用∠BCO+∠BCP求出∠PCO=60°.又OC=3,在Rt△POC中,求出OP的长,由PQ=OQ+OP求出运动的总路程,即可求出此时的时间t.(3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况讨论.①当⊙P与BC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ-OP求出点P运动的路程,即可得出此时的时间t.②当⊙P与CD相切于点C时,点P与点O重合,可得出点P运动的路程为OQ的长,求出此时的时间t.③当⊙P与AD相切时,利用切线的性质得到A为切点,由PC=PA,且PA=9-t,PO=t-4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t.综上,得到所有满足题意的时间t的值.
解:(1)∵∠CBO=45°,∠COB=90°,
∴∠BCO=90°-45°=45°.
∴∠BCO=∠CBO.
∴OC=OB=3.
∵点C在y轴的正半轴上,
∴点C的坐标为(0,3).
(2)分两种情况考虑.
①当点P在点B右侧时,如答图①.

以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

标签: 中考数学复习

上一篇: 2019年中考数学复习--与圆有关的计算(含解析)

下一篇: 2019年中考数学复习--圆的基本性质(带解析)

最新文章

热门文章

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com

Top