:小学数学常考行船问题,列车问题练习(附例题、解题思路)
行船问题
【含义】
行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】
(顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2
【解题思路和方法】
大多数情况可以直接利用数量关系的公式。
例1
一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25(千米)
船的逆水速为25-15=10(千米)
船逆水行这段路程的时间为320÷10=32(小时)
答:这只船逆水行这段路程需用32小时。
例2
甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
解由题意得甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可见(36-20)相当于水速的2倍,
所以,水速为每小时(36-20)÷2=8(千米)
又因为,乙船速-水速=360÷15,
所以,乙船速为360÷15+8=32(千米)
乙船顺水速为32+8=40(千米)
所以,乙船顺水航行360千米需要
360÷40=9(小时)
答:乙船返回原地需要9小时。
列车问题
【含义】
这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
【数量关系】
火车过桥:过桥时间=(车长+桥长)÷车速
火车追及:追及时间=(甲车长+乙车长+距离)
÷(甲车速-乙车速)
火车相遇:相遇时间=(甲车长+乙车长+距离)
÷(甲车速+乙车速)
【解题思路和方法】
大多数情况可以
文档为doc格式