:2020年常德市初中毕业生学业考试数学试卷及答案华师大版
考试注意:1.请考生在总分栏上面的座位号方格内工整地填写好座位号;
2.本学科试卷共六道大题,满分150分,考试时量120分钟;
3.考生可带科学计算器参加考试.
一、填空题(本大题8个小题,每个小题4分,满分32分)
1.的相反数是 .
2.据统计,湖南省常德市2005年农业总产值达到24 800 000 000元,用科学记数法可表示为 元.
3.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).
4.等腰梯形的上底、下底和腰长分别为4cm,10cm,6cm,则等腰梯形的下底角为
度.
5.多项式与多项式的公因式是 .
6.如图1,若,与分别相交于点的平分线与相交于点,且,则 度.
7.在半径为10cm的中,圆心到弦的距离为6cm,则弦的长是 cm.
的代数式(为正整数)表示数表中第
行第列的数: .
二、选择题(本题中的选项只有一个是正确的,请你将正确的选项填在下表中,本大题8个小题,每小题4分,满分32分)
题号
9
10
11
12
13
14
15
16
答案
9.下列计算正确的是( )
A. B. C. D.
10.图2是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是( )
11.图3是某中学七年级学生参加课外活动人数的扇形统计图,
若参加舞蹈类的学生有42人,则参加球类活动的学生人数有( )
A.145人 B.147人
C.149人 D.151人
12.根据下列表格中二次函数的自变量与函数值的对应值,判断方程(为常数)的一个解的范围是( )
6.17
6.18
6.19
6.20
A. B.
C. D.
13.下列命题中,真命题是( )
A.两条对角线相等的四边形是矩形 B.两条对角线垂直的四边形是菱形
C.两条对角线垂直且相等的四边形是正方形;D.两条对角线相等的平行四边形是矩形
14.已知是反比例函数的图象上的三点,且,则的大小关系是( )
A. B.
C. D.
15.如图4,在直角坐标系中,的半径为1,
则直线与的位置关系是( )
A.相离 B.相交
C.相切 D.以上三种情形都有可能
16.若用(1),(2),(3),(4)四幅图象分别表示变量之间的关系,将下面的(a),(b),(c),(d)对应的图象排序:
(a)面积为定值的矩形(矩形的相邻两边长的关系)
(b)运动员推出去的铅球(铅球的高度与时间的关系)
(c)一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)
(d)某人从地到地后,停留一段时间,然后按原速返回(离开地的距离与时间的关系),其中正确的顺序是( )
A.(3)(4)(1)(2) B.(3)(2)(1)(4)
C.(4)(3)(1)(2) D.(3)(4)(2)(1)
三、(本大题4个小题,每小题6分,满分24分)
17.计算:
18.先化简代数式:,然后选取一个使原式有意义的的值代入求值.
19.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.
(1)请你通过列表(或画树状图)计算甲获胜的概率.(4分)
(2)你认为这个游戏公平吗?为什么?(2分)
20.如图5,已知反比例函数的图象经过点,一次函数的图象经过点与点,且与反比例函数的图象相交于另一点.
(1)分别求出反比例函数与一次函数的解析式;(4分)
(2)求点的坐标.(2分)
四、(本大题2个小题,每小题8分,满分16分)
21.如图6,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度,斜坡的长是50米,在山坡的坡底处测得铁架顶端的仰角为,在山坡的坡顶处测得铁架顶端的仰角为.
(1)求小山的高度;(4分)
22.如图7,是等边三角形内的一点,连结,以为边作,且,连结.
(1)观察并猜想与之间的大小关系,并证明你的结论.(4分)
(2)若,连结,试判断的形状,并说明理由.(4分)
五、(本大题2个小题,每小题10分,满分20分)
23.在今年“五一”长假期间,某学校团委会要求学生参加一项社会调查活动.八年级学生小青想了解她所居住的小区500户居民的家庭收入情况,从中随机调查了40户居民家庭的收入情况(收入取整数,单位:元)并绘制了如下的频数分布表和频数分布直方图.
分组
频数
频率
2
0.050
6
0.150
0.450
9
0.225
2
0.050
合计
40
1.000
根据以上提供的信息,解答下列问题:
(1) 补全频数分布表:(3分)
(2) 补全频数分布直方图;(2分)
(3) 这40户家庭收入的中位数落在哪一个小组?(2分)
(4) 请你估计该居民小区家庭收入较低(不足1000元)的户数大约有多少户?(3分)
24.某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元.
(1)求挂式空调和电风扇每台的采购价各是多少元?(5分)
(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时,所获得的利润不少于3500元.试问该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?(5分)
六、(本大题2个小题,每小题13分,满分26分)
25.如图8,在直角坐标系中,以点为圆心,以为半径的圆与轴相交于点,与轴相交于点.
(1)若抛物线经过两点,求抛物线的解析式,并判断点是否在该抛物线上.(6分)
(2)在(1)中的抛物线的对称轴上求一点,使得的周长最小.(3分)
(3)设为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点,使得四边形是平行四边形.若存在,求出点的坐标;若不存在,说明理由.(4分)
26.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.
(1)如图9,当射线经过点,即点与点重合时,易证.此时, .(2分)
(2)将三角板由图9所示的位置绕点沿逆时针方向旋转,设旋转角为.其中
,问的值是否改变?说明你的理由.(5分)
(3)在(2)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图10,图11供解题用)(6分)
2006年常德市初中毕业生学业考试试卷
数学参考答案及评分标准
说明:
(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分.
(二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分.
(三)评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度者,视影响程度决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如有严重的概念错误,就不给分.
一、填空题(本小题8个小题,每小题4分,满分32分)
1. 2. 3.或等
4. 5. 6. 7. 8.
二、选择题(本小题8个小题,每小题4分,满分32分)
题号
9
10
11
12
13
14
15
16
答案
D
B
B
C
D
C
C
A
三、(本小题4个小题,每小题6分,满分24分)
17.解:
··········································································· 3分
··························································································· 4分
································································································· 5分
········································································································· 6分
18.解:
··························································· 2分
···················································································· 4分
··································································································· 5分
当时,原式的值为.········································································· 6分
说明:只要,且代入求值正确,均可记满分6分.
19.解:(1)利用列表法得出所有可能的结果,如下表:
1
2
3
4
5
5
10
15
20
6
6
12
18
24
7
7
14
21
28
8
8
16
24
32
由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为.············································································································· 4分
(2)这个游戏对双方不公平,因为甲获胜的概率,乙获胜的概率,,所以,游戏对双方是不公平的.···················································································································· 6分
20.解:(1)点在反比例函数的图象上.
即
又,在一次函数图象上.
即
反比例函数与一次函数解析式分别为:与·········· 4分
(2)由得,即
或于是或
点的坐标为········································································ 6分
四、(本大题2个小题,每小题8分,满分16分)
21.解:(1)如图,过作垂直于坡底的水平线于点.
由已知,斜坡的坡比,于是
坡角······················································································· 2分
于是在中,
即小山高为25米·························································································· 4分
(2)设铁架的高.
在中,已知,于是
······················ 6分
在中,已知,
又
由,得
,即铁架高米························································ 8分
22.解:(1)猜想:··············································································· 1分
证明:在与中,
,,
···························································································· 4分
(2)由 可设,, 5分
连结,在中,由于,且
为正三角形
于是在中,
是直角三角形·········································································· 8分
五、(本大题2个小题,每小题10分,满分20分)
23.解:(1)频数:18 频数:3, 频率:0.075································ 3分
(2)略·············································································································· 5分
(3)这40户家庭收入的中位数在这个小组(或答第三小组)········ 7分
(4)因为收入较低的频率为,所以该小区500户居民的家庭收入较低的户数为户.····················································································································· 10分
24.解:(1)设挂式空调和电风扇每台的采购价格分别为元和元
依题意,得········································································ 3分
解得
即挂式空调和电风扇每台的采购价分别为元和元.······························ 5分
(2)设该业主计划购进空调台,则购进电风扇台
则
解得:
为整数 为9,10,11········································································· 7分
故有三种进货方案,分别是:方案一:购进空调9台,电风扇61台;
方案二:购进空调10台,电风扇60台;
方案三:购进空调11台,电风扇59台.··············· 8分
设这两种电器销售完后,所获得的利润为,则
由于随的增大而增大.
故当时,有最大值,
即选择第3种进货方案获利最大,最大利润为元································ 10分
说明:如果将,,时分别代入中,通过比较得到获利最大的方案,同样记满分.
六、(本大题2个小题,每小题13分,满分26分)
25.解:(1),
,
又在中,,
的坐标为··········································································· 3分
又两点在抛物线上,
解得
抛物线的解析式为:········································ 5分
当时,
点在抛物线上··································································· 6分
(2)
抛物线的对称轴方程为·················· 7分
在抛物线的对称轴上存在点,使的周长最小.
的长为定值 要使周长最小只需最小.
连结,则与对称轴的交点即为使周长最小的点.
设直线的解析式为.
由得
直线的解析式为
由得
故点的坐标为···························································· 9分
(3)存在,设为抛物线对称轴上一点,在抛物线上要使四边形为平行四边形,则且,点在对称轴的左侧.
于是,过点作直线与抛物线交于点
由得
从而,
故在抛物线上存在点,使得四边形为平行四边形.··
···························································································································· 13分
26.解:(1)8······································································································· 2分
(2)的值不会改变.········································································· 3分
理由如下:在与中,
即
······················ 5分
·················································· 7分
(3)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,
由(2)知:得
于是
··········································································· 10分
情形2:当时,时,即,此时两三角板重叠部分为,
由于,,易证:,
即解得
于是
综上所述,当时,
当时,
········································ 13分
说明:①未指明的范围,不扣分.
②上述情形2有多种解法,如:
法二:连结,并过作于点,在与中,
即
法三:过作于点,在中,
于是在与中
即
2.本学科试卷共六道大题,满分150分,考试时量120分钟;
3.考生可带科学计算器参加考试.
一、填空题(本大题8个小题,每个小题4分,满分32分)
1.的相反数是 .
2.据统计,湖南省常德市2005年农业总产值达到24 800 000 000元,用科学记数法可表示为 元.
3.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).
4.等腰梯形的上底、下底和腰长分别为4cm,10cm,6cm,则等腰梯形的下底角为
度.
5.多项式与多项式的公因式是 .
6.如图1,若,与分别相交于点的平分线与相交于点,且,则 度.
7.在半径为10cm的中,圆心到弦的距离为6cm,则弦的长是 cm.
的代数式(为正整数)表示数表中第
行第列的数: .
二、选择题(本题中的选项只有一个是正确的,请你将正确的选项填在下表中,本大题8个小题,每小题4分,满分32分)
题号
9
10
11
12
13
14
15
16
答案
9.下列计算正确的是( )
A. B. C. D.
10.图2是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是( )
11.图3是某中学七年级学生参加课外活动人数的扇形统计图,
若参加舞蹈类的学生有42人,则参加球类活动的学生人数有( )
A.145人 B.147人
C.149人 D.151人
12.根据下列表格中二次函数的自变量与函数值的对应值,判断方程(为常数)的一个解的范围是( )
6.17
6.18
6.19
6.20
A. B.
C. D.
13.下列命题中,真命题是( )
A.两条对角线相等的四边形是矩形 B.两条对角线垂直的四边形是菱形
C.两条对角线垂直且相等的四边形是正方形;D.两条对角线相等的平行四边形是矩形
14.已知是反比例函数的图象上的三点,且,则的大小关系是( )
A. B.
C. D.
15.如图4,在直角坐标系中,的半径为1,
则直线与的位置关系是( )
A.相离 B.相交
C.相切 D.以上三种情形都有可能
16.若用(1),(2),(3),(4)四幅图象分别表示变量之间的关系,将下面的(a),(b),(c),(d)对应的图象排序:
(a)面积为定值的矩形(矩形的相邻两边长的关系)
(b)运动员推出去的铅球(铅球的高度与时间的关系)
(c)一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)
(d)某人从地到地后,停留一段时间,然后按原速返回(离开地的距离与时间的关系),其中正确的顺序是( )
A.(3)(4)(1)(2) B.(3)(2)(1)(4)
C.(4)(3)(1)(2) D.(3)(4)(2)(1)
三、(本大题4个小题,每小题6分,满分24分)
17.计算:
18.先化简代数式:,然后选取一个使原式有意义的的值代入求值.
19.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.
(1)请你通过列表(或画树状图)计算甲获胜的概率.(4分)
(2)你认为这个游戏公平吗?为什么?(2分)
20.如图5,已知反比例函数的图象经过点,一次函数的图象经过点与点,且与反比例函数的图象相交于另一点.
(1)分别求出反比例函数与一次函数的解析式;(4分)
(2)求点的坐标.(2分)
四、(本大题2个小题,每小题8分,满分16分)
21.如图6,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度,斜坡的长是50米,在山坡的坡底处测得铁架顶端的仰角为,在山坡的坡顶处测得铁架顶端的仰角为.
(1)求小山的高度;(4分)
22.如图7,是等边三角形内的一点,连结,以为边作,且,连结.
(1)观察并猜想与之间的大小关系,并证明你的结论.(4分)
(2)若,连结,试判断的形状,并说明理由.(4分)
五、(本大题2个小题,每小题10分,满分20分)
23.在今年“五一”长假期间,某学校团委会要求学生参加一项社会调查活动.八年级学生小青想了解她所居住的小区500户居民的家庭收入情况,从中随机调查了40户居民家庭的收入情况(收入取整数,单位:元)并绘制了如下的频数分布表和频数分布直方图.
分组
频数
频率
2
0.050
6
0.150
0.450
9
0.225
2
0.050
合计
40
1.000
根据以上提供的信息,解答下列问题:
(1) 补全频数分布表:(3分)
(2) 补全频数分布直方图;(2分)
(3) 这40户家庭收入的中位数落在哪一个小组?(2分)
(4) 请你估计该居民小区家庭收入较低(不足1000元)的户数大约有多少户?(3分)
24.某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元.
(1)求挂式空调和电风扇每台的采购价各是多少元?(5分)
(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时,所获得的利润不少于3500元.试问该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?(5分)
六、(本大题2个小题,每小题13分,满分26分)
25.如图8,在直角坐标系中,以点为圆心,以为半径的圆与轴相交于点,与轴相交于点.
(1)若抛物线经过两点,求抛物线的解析式,并判断点是否在该抛物线上.(6分)
(2)在(1)中的抛物线的对称轴上求一点,使得的周长最小.(3分)
(3)设为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点,使得四边形是平行四边形.若存在,求出点的坐标;若不存在,说明理由.(4分)
26.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.
(1)如图9,当射线经过点,即点与点重合时,易证.此时, .(2分)
(2)将三角板由图9所示的位置绕点沿逆时针方向旋转,设旋转角为.其中
,问的值是否改变?说明你的理由.(5分)
(3)在(2)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图10,图11供解题用)(6分)
2006年常德市初中毕业生学业考试试卷
数学参考答案及评分标准
说明:
(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分.
(二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分.
(三)评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度者,视影响程度决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如有严重的概念错误,就不给分.
一、填空题(本小题8个小题,每小题4分,满分32分)
1. 2. 3.或等
4. 5. 6. 7. 8.
二、选择题(本小题8个小题,每小题4分,满分32分)
题号
9
10
11
12
13
14
15
16
答案
D
B
B
C
D
C
C
A
三、(本小题4个小题,每小题6分,满分24分)
17.解:
··········································································· 3分
··························································································· 4分
································································································· 5分
········································································································· 6分
18.解:
··························································· 2分
···················································································· 4分
··································································································· 5分
当时,原式的值为.········································································· 6分
说明:只要,且代入求值正确,均可记满分6分.
19.解:(1)利用列表法得出所有可能的结果,如下表:
1
2
3
4
5
5
10
15
20
6
6
12
18
24
7
7
14
21
28
8
8
16
24
32
由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为.············································································································· 4分
(2)这个游戏对双方不公平,因为甲获胜的概率,乙获胜的概率,,所以,游戏对双方是不公平的.···················································································································· 6分
20.解:(1)点在反比例函数的图象上.
即
又,在一次函数图象上.
即
反比例函数与一次函数解析式分别为:与·········· 4分
(2)由得,即
或于是或
点的坐标为········································································ 6分
四、(本大题2个小题,每小题8分,满分16分)
21.解:(1)如图,过作垂直于坡底的水平线于点.
由已知,斜坡的坡比,于是
坡角······················································································· 2分
于是在中,
即小山高为25米·························································································· 4分
(2)设铁架的高.
在中,已知,于是
······················ 6分
在中,已知,
又
由,得
,即铁架高米························································ 8分
22.解:(1)猜想:··············································································· 1分
证明:在与中,
,,
···························································································· 4分
(2)由 可设,, 5分
连结,在中,由于,且
为正三角形
于是在中,
是直角三角形·········································································· 8分
五、(本大题2个小题,每小题10分,满分20分)
23.解:(1)频数:18 频数:3, 频率:0.075································ 3分
(2)略·············································································································· 5分
(3)这40户家庭收入的中位数在这个小组(或答第三小组)········ 7分
(4)因为收入较低的频率为,所以该小区500户居民的家庭收入较低的户数为户.····················································································································· 10分
24.解:(1)设挂式空调和电风扇每台的采购价格分别为元和元
依题意,得········································································ 3分
解得
即挂式空调和电风扇每台的采购价分别为元和元.······························ 5分
(2)设该业主计划购进空调台,则购进电风扇台
则
解得:
为整数 为9,10,11········································································· 7分
故有三种进货方案,分别是:方案一:购进空调9台,电风扇61台;
方案二:购进空调10台,电风扇60台;
方案三:购进空调11台,电风扇59台.··············· 8分
设这两种电器销售完后,所获得的利润为,则
由于随的增大而增大.
故当时,有最大值,
即选择第3种进货方案获利最大,最大利润为元································ 10分
说明:如果将,,时分别代入中,通过比较得到获利最大的方案,同样记满分.
六、(本大题2个小题,每小题13分,满分26分)
25.解:(1),
,
又在中,,
的坐标为··········································································· 3分
又两点在抛物线上,
解得
抛物线的解析式为:········································ 5分
当时,
点在抛物线上··································································· 6分
(2)
抛物线的对称轴方程为·················· 7分
在抛物线的对称轴上存在点,使的周长最小.
的长为定值 要使周长最小只需最小.
连结,则与对称轴的交点即为使周长最小的点.
设直线的解析式为.
由得
直线的解析式为
由得
故点的坐标为···························································· 9分
(3)存在,设为抛物线对称轴上一点,在抛物线上要使四边形为平行四边形,则且,点在对称轴的左侧.
于是,过点作直线与抛物线交于点
由得
从而,
故在抛物线上存在点,使得四边形为平行四边形.··
···························································································································· 13分
26.解:(1)8······································································································· 2分
(2)的值不会改变.········································································· 3分
理由如下:在与中,
即
······················ 5分
·················································· 7分
(3)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,
由(2)知:得
于是
··········································································· 10分
情形2:当时,时,即,此时两三角板重叠部分为,
由于,,易证:,
即解得
于是
综上所述,当时,
当时,
········································ 13分
说明:①未指明的范围,不扣分.
②上述情形2有多种解法,如:
法二:连结,并过作于点,在与中,
即
法三:过作于点,在中,
于是在与中
即
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式