:《相似三角形的性质及应用》--巩固练习(基础) (含答案)
相似三角形的性质及应用--巩固练习(基础)
【巩固练习】
一、选择题
1.(2017•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )
A. B. C. D.
2. 如图, 在△ABC中, D、E两点分别在AB、AC边上, DE∥BC. 若AD:DB = 2:1, 则S△ADE : S△ABC为 ( )
A. 9:4 B. 4:9 C. 1:4 D. 3:2
3.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另一块草坪的周长是( ).
A.24米 B.54米 C.24米或54米 D.36米或54米
4. 图为△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB// DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=( )
A.3 B.7 C.12 D.15
5.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )
A.6米 B.8米 C.18米 D.24米
6. 要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变,那么它的边长要增大到原来的( )倍.
A.2 B.4 C.2 D.64
二、填空题
7. 如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.
8. 已知两个相似三角形的相似比为,面积之差为25,则较大三角形的面积为______.
9.(2017•吉林)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为
相似三角形的性质及应用--巩固练习(基础)
【巩固练习】
一、选择题
1.(2017•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )
A. B. C. D.
2. 如图, 在△ABC中, D、E两点分别在AB、AC边上, DE∥BC. 若AD:DB = 2:1, 则S△ADE : S△ABC为 ( )
A. 9:4 B. 4:9 C. 1:4 D. 3:2
3.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另一块草坪的周长是( ).
A.24米 B.54米 C.24米或54米 D.36米或54米
4. 图为△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB// DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=( )
A.3 B.7 C.12 D.15
5.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )
A.6米 B.8米 C.18米 D.24米
6. 要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变,那么它的边长要增大到原来的( )倍.
A.2 B.4 C.2 D.64
二、填空题
7. 如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.
8. 已知两个相似三角形的相似比为,面积之差为25,则较大三角形的面积为______.
9.(2017•吉林)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式