:2020年中考数学真题分类汇编第三期专题20三角形的边与角命题的有关知识试题含解析
三角形的边与角(命题的有关知识)
一.选择题
1. (2018·广西梧州·3分)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是( )
A.2 B.3 C.4 D.6
【分析】根据角的平分线上的点到角的两边的距离相等即可得.
【解答】解: BG是∠ABC的平分线,DE⊥AB,DF⊥BC,
∴DE=DF=6,
故选:D.
【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.
2.(2018·云南省昆明·4分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为( )
A.90° B.95° C.100° D.120°
【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.
【解答】解: CO=AO,∠AOC=130°,
∴∠CAO=25°,
又 ∠AOB=70°,
∴∠CDO=∠CAO+∠AOB=25°+70°=95°,
故选:B.
【点评】本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.
3.(2018·浙江省台州·4分)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )
A.△ADF≌△CGE
B.△B′FG的周长是一个定值
C.四边形FOEC的面积是一个定值
D.四边形OGBF的面积是一个定值
【分析】A.根据等边三角形ABC的外心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DO
一.选择题
1. (2018·广西梧州·3分)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是( )
A.2 B.3 C.4 D.6
【分析】根据角的平分线上的点到角的两边的距离相等即可得.
【解答】解: BG是∠ABC的平分线,DE⊥AB,DF⊥BC,
∴DE=DF=6,
故选:D.
【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.
2.(2018·云南省昆明·4分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为( )
A.90° B.95° C.100° D.120°
【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.
【解答】解: CO=AO,∠AOC=130°,
∴∠CAO=25°,
又 ∠AOB=70°,
∴∠CDO=∠CAO+∠AOB=25°+70°=95°,
故选:B.
【点评】本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.
3.(2018·浙江省台州·4分)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )
A.△ADF≌△CGE
B.△B′FG的周长是一个定值
C.四边形FOEC的面积是一个定值
D.四边形OGBF的面积是一个定值
【分析】A.根据等边三角形ABC的外心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DO
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式