:2020年中考数学复习试题:圆 试题专题
【考点突破】圆
安徽中考
2017年中考
1.(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.
(1)求证:四边形AECD为平行四边形;
(2)连接CO,求证:CO平分∠BCE.
【解】
2016年中考
1.(2016•安徽10)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )
A. B.2 C. D.
(第1题图) (第2题图)
2.(2016•安徽13)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为 .
2015年中考
1.(2015•安徽12)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是 .
2.(2015•安徽20)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
【解】
2014年中考
1.(2014•安徽19)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.
【解】
考点演练
考点一、圆的有关性质
1.(2017•广州)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法
安徽中考
2017年中考
1.(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.
(1)求证:四边形AECD为平行四边形;
(2)连接CO,求证:CO平分∠BCE.
【解】
2016年中考
1.(2016•安徽10)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )
A. B.2 C. D.
(第1题图) (第2题图)
2.(2016•安徽13)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为 .
2015年中考
1.(2015•安徽12)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是 .
2.(2015•安徽20)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
【解】
2014年中考
1.(2014•安徽19)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.
【解】
考点演练
考点一、圆的有关性质
1.(2017•广州)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式