:2019年中考数学复习《二次根式》专项训练(有答案)MnnPUK
2018~2019数学中考专项:二次根式
【沙盘预演】
1.函数y=自变量的取值范围是( )
A.x≠﹣3 B.x>﹣3 C.x≥﹣3 D.x≤﹣3
【解析】解:根据题意得到:x+3>0,
解得x>﹣3,
故选B.
2.下列运算正确的是( )
A.﹣ =13 B. =﹣6
C.﹣ =﹣5 D. =±3
【解析】解:A、=﹣13,故错误;
B、=6,故错误;
C、=﹣5,正确;
D、=3,故错误;
故选:C.
3.与是同类二次根式的是( )
A. B. C. D.
【解析】解:A、与﹣的被开方数不同,故A错误;
B、与﹣的被开方数不同,故B错误;
C、与﹣的被开方数相同,故C正确;
D、与﹣的被开方数不同,故D错误;
故选:C
4.下列运算正确的是( )
A.﹣a•a3=a3 B.﹣(a2)2=a4
C.x﹣x= D.(﹣2)(+2)=﹣1
【解析】解:A、﹣a•a3=﹣a4,故选项错误;
B、﹣(a2)2=﹣a4,选项错误;
C、x﹣x=x,选项错误;
D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.
故选D.
5.若二次根式有意义,则a的取值范围是( )
A.a≥2 B.a≤2 C.a>2 D.a≠2
【解析】解: 二次根式有意义,
∴a﹣2≥0,即a≥2,
则a的范围是a≥2,
故选A
6.在函数y=中,自变量x的取值范围是( )
A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4
【解析】欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.
∴x的取值范围是解得x≥3且x≠4.故选D.
7.要使式子有意义,则x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
【解析】解:要使式子有意义,
故x﹣1≥0,
解得:x≥1.
则x的取值范围是:x≥1.
故选:C.
8.实数a,b在数轴上对应点的位置如图所示,化简|
2018~2019数学中考专项:二次根式
【沙盘预演】
1.函数y=自变量的取值范围是( )
A.x≠﹣3 B.x>﹣3 C.x≥﹣3 D.x≤﹣3
【解析】解:根据题意得到:x+3>0,
解得x>﹣3,
故选B.
2.下列运算正确的是( )
A.﹣ =13 B. =﹣6
C.﹣ =﹣5 D. =±3
【解析】解:A、=﹣13,故错误;
B、=6,故错误;
C、=﹣5,正确;
D、=3,故错误;
故选:C.
3.与是同类二次根式的是( )
A. B. C. D.
【解析】解:A、与﹣的被开方数不同,故A错误;
B、与﹣的被开方数不同,故B错误;
C、与﹣的被开方数相同,故C正确;
D、与﹣的被开方数不同,故D错误;
故选:C
4.下列运算正确的是( )
A.﹣a•a3=a3 B.﹣(a2)2=a4
C.x﹣x= D.(﹣2)(+2)=﹣1
【解析】解:A、﹣a•a3=﹣a4,故选项错误;
B、﹣(a2)2=﹣a4,选项错误;
C、x﹣x=x,选项错误;
D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.
故选D.
5.若二次根式有意义,则a的取值范围是( )
A.a≥2 B.a≤2 C.a>2 D.a≠2
【解析】解: 二次根式有意义,
∴a﹣2≥0,即a≥2,
则a的范围是a≥2,
故选A
6.在函数y=中,自变量x的取值范围是( )
A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4
【解析】欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.
∴x的取值范围是解得x≥3且x≠4.故选D.
7.要使式子有意义,则x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
【解析】解:要使式子有意义,
故x﹣1≥0,
解得:x≥1.
则x的取值范围是:x≥1.
故选:C.
8.实数a,b在数轴上对应点的位置如图所示,化简|
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式