:高中数学人教A版选修4-4课时跟踪检测(三) 简单曲线的极坐标方程
课时跟踪检测(三) 简单曲线的极坐标方程
一、选择题
1.极坐标方程ρ=1表示( )
A.直线 B.射线 C.圆 D.半圆
解析:选C ∵ρ=1,∴ρ2=1,∴x2+y2=1。∴表示圆.
2.极坐标方程ρ=sin θ+2cos θ表示的曲线为( )
A.直线 B.圆 C.椭圆 D.双曲线
解析:选B 由ρ=sin θ+2cos θ,得ρ2=ρsin θ+2ρcos θ,
∴x2+y2=y+2x,即x2+y2-2x-y=0,表示圆.
3.在极坐标系中,方程ρ=6cos θ表示的曲线是( )
A.以点(-3,0)为圆心,3为半径的圆
B.以点(3,π)为圆心,3为半径的圆
C.以点(3,0)为圆心,3为半径的圆
D.以点为圆心,3为半径的圆
解析:选C 由ρ=6cos θ得ρ2=6ρcos θ,即x2+y2-6x=0,
表示以(3,0)为圆心,半径为3的圆.
4.以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是( )
A.ρ=2cos B.ρ=2sin
C.ρ=2cos(θ-1) D.ρ=2sin(θ-1)
解析:选C 在极坐标系中,圆心在(ρ0,θ0),半径为r的圆的方程为:
r2=ρ+ρ2-2ρρ0cos(θ-θ0),所以可得ρ=2cos(θ-1).
二、填空题
5.把圆的普通方程x2+(y-2)2=4化为极坐标方程为________.
解析:将x=ρcos θ,y=ρsin θ代入,得
ρ2cos2θ+ρ2sin2θ-4ρsin θ=0,即ρ=4sin θ。
答案:ρ=4sin θ
6.已知圆的极坐标方程为ρ=2cos θ-2sin θ,θ∈,则圆心的极坐标是________.
解析:设圆心为(a,β)(a>0),半径为a的圆的极坐标方程为ρ=2acos(θ-β).
因为ρ=2cos θ-2sin θ=4cos
=4cos=4cos,
所以此圆的圆心的极坐标为。
答案:
7.已知圆的极坐标方程为ρ=4cos θ,圆心为C,点P的极坐标
文档为doc格式