:九年级上册数学几何辅助线之手拉手模型教案
手拉手模型
教学目标:
1:理解手拉手模型的概念,并掌握其特点
2:掌握手拉手模型的应用
知识梳理:
1、等边三角形
条件:△OAB,△OCD均为等边三角形
结论:;;
导角核心:
2、等腰直角三角形
条件:△OAB,△OCD均为等腰直角三角形
结论:;;
导角核心:
3、任意等腰三角形
条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD
结论:;;
核心图形:
核心条件:;;
典型例题:
例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:
(1)△ABE≌△DBC;(2)AE=DC;
(3)AE与DC的夹角为60°;(4)△AGB≌△DFB;
(5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC
例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:
(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;
(4)AE与DC的交点设为H,BH平分∠AHC
例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:
(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;
(4)AE与DC的交点设为H,BH平分∠AHC
文档为doc格式