:九年级数学中考知识点梳理第6讲 一元二次方程
:
一、 知识清单梳理
知识点一:一元二次方程及其解法
关键点拨及对应举例
1. 一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
例:方程是关于x的一元二次方程,则方程的根为-1.
2.一元二次方程的解法
(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.
( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.
( 3 )公式法:一元二次方程 ax2+bx+c=0的求根公式为x=(b2-4ac≥0).
(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.
解一元二次方程时,注意观察, 先特殊后一般,即先考虑能否用直接开平方法和因式分解法,不能用这两种方法解时,再用公式法.
例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.
>
第6讲 一元二次方程 一、 知识清单梳理
知识点一:一元二次方程及其解法
关键点拨及对应举例
1. 一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
例:方程是关于x的一元二次方程,则方程的根为-1.
2.一元二次方程的解法
(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.
( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.
( 3 )公式法:一元二次方程 ax2+bx+c=0的求根公式为x=(b2-4ac≥0).
(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.
解一元二次方程时,注意观察, 先特殊后一般,即先考虑能否用直接开平方法和因式分解法,不能用这两种方法解时,再用公式法.
例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式