:2020届高考数学(理)一轮复习课时训练:第14章_选修部分_72_word版含解析

:
>

【课时训练】第72节 证明不等式的基本方法
解答题
1.(2018广州五校联考)已知函数f(x)=|x+3|+|x-1|,其最小值为t.
(1)求t的值;
(2)若正实数a,b满足a+b=t,求证:+≥.
(1)【解】因为|x+3|+|x-1|=|x+3|+|1-x|≥|x+3+1-x|=4,所以f(x)min=4,即t=4.
(2)【证明】由(1)得a+b=4,故+=1,+==+1++≥+2=+1=,当且仅当b=2a,即a=,b=时取等号,故+≥.
2.(2018湖北八校联考)设不等式-2<|x-1|-|x+2|<0> (1)证明:<;
(2)比较|1-4ab|与2|a-b|的大小,并说明理由.
(1)【证明】记f(x)=|x-1|-|x+2|=
由-2<-2x-1<0 br=>所以≤|a|+|b|<×+×=.
(2)【解】由(1)得a2<,b2<.
因为|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=(4a2-1)(4b2-1)>0.
所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|.
3.(2018广州模拟)已知定义在R上的函数f(x)=|x-m|+|x|,m∈N*,存在实数x使f(x)<2> (1)求实数m的值;
(2)若α,β≥1,f(α)+f(β)=4,求证:+≥3.
【解】(1)因为|x-m|+|x|≥|(x-m)-x|=|m|.
要使不等式|x-m|+|x|<2 br=>因为m∈N*,所以m=1.
(2)因为α,β≥1,f(x)=2x-1(x≥1),
所以f(α)+f(β)=2α-1+2β-1=4,即α+β=3,所以+=(α+β)=≥=3.(当且仅当=,即α=2,β=1时等号成立)故+≥3.
4.(2018武昌质检)已知x,y∈R,且|x|<1> 【证明】∵≤=≤=1-|xy|,∴+≥≥,
∴原不等式成立.
5.(2018长沙一模)设α,β,γ均为实数.
(1)证明:|cos (α+β)|≤|cos α|+|sin β
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式


上一篇: 2020届高考数学(理)一轮复习课时训练:第13章_推理与证明、算法、复数_65_word版含解析

下一篇: 2020届高考数学(理)一轮复习课时训练:第14章_选修部分_71_word版含解析

最新文章

热门文章

闽ICP备12022453号-17

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com