:第2课时 相似三角形的判定定理1(1)
:
2.能熟练地运用相似三角形的判定定理1.(难点)
一、情境导入
根据相似三角形的定义,三角分别相等、三边对应成比例的两个三角形叫做相似三角形.那么,两个三角形至少要满足哪些条件就相似呢?能否类比两个三角形全等的条件寻找判定两个三角形相似的条件呢?
二、合作探究
探究点一:相似三角形的判定定理1
在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=70°,∠C′=30°,这两个三角形相似吗?请说明理由.
解:△ABC∽△A′B′C′.
理由:由三角形的内角和是180°,
得∠C=180°-∠A-∠B=180°-80°-70°=30°,
所以∠A=∠A′,∠C=∠C′.
故△ABC∽△A′B′C′(两角分别相等的两个三角形相似).
方法总结:两个三角形已有一对角相等,故只要看是否还有一对角相等即可.一般地,在解题过程中要特别注意“公共角”“对顶角”“同角(或等角)的余角”等隐含条件.
>
1.能正确地理解相似三角形的判定定理1;(重点) 2.能熟练地运用相似三角形的判定定理1.(难点)
一、情境导入
根据相似三角形的定义,三角分别相等、三边对应成比例的两个三角形叫做相似三角形.那么,两个三角形至少要满足哪些条件就相似呢?能否类比两个三角形全等的条件寻找判定两个三角形相似的条件呢?
二、合作探究
探究点一:相似三角形的判定定理1
在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=70°,∠C′=30°,这两个三角形相似吗?请说明理由.
解:△ABC∽△A′B′C′.
理由:由三角形的内角和是180°,
得∠C=180°-∠A-∠B=180°-80°-70°=30°,
所以∠A=∠A′,∠C=∠C′.
故△ABC∽△A′B′C′(两角分别相等的两个三角形相似).
方法总结:两个三角形已有一对角相等,故只要看是否还有一对角相等即可.一般地,在解题过程中要特别注意“公共角”“对顶角”“同角(或等角)的余角”等隐含条件.
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式