:整数指数幂教案
:
一、教学目标:
1.知道负整数指数幂=(a≠0,n是正整数).
2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
二、重点、难点
1.重点:掌握整数指数幂的运算性质.
2.难点:会用科学计数法表示小于1的数.
三、例、习题的意图分析
1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.
2. P24观察是为了引出同底数的幂的乘法:,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.
3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.
4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.
>
16.2.3整数指数幂 一、教学目标:
1.知道负整数指数幂=(a≠0,n是正整数).
2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
二、重点、难点
1.重点:掌握整数指数幂的运算性质.
2.难点:会用科学计数法表示小于1的数.
三、例、习题的意图分析
1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.
2. P24观察是为了引出同底数的幂的乘法:,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.
3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.
4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式