:人教版九年级上册22.1二次函数(5)教案
教学时间
课题
23。1 二次函数(5)
课型
新授课
1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。
2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。
过 程
和
方 法
让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。
教学重点
确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质
教学难点
正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质
课 堂 教 学 程 序 设 计
设计意图
一、提出问题
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)
2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?
(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图23。2。3)
3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?
二、试一试
你能填写下表吗?
y=2x2 向右平移
的图象 1个单位
y=2(x-1)2
向上平移
1个单位
y=2(x-1)2+1的图象
开口方向
向上
对称轴
y轴
顶 点
(0,0)
问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?
文档为doc格式