:高二数学人教A版选修4-5学业分层测评13 Word版含答案
:
(建议用时:45分钟)
[学业达标]
一、选择题
1.设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.那么下列命题总成立的是( )
A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立
B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立
C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立
D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立
【解析】 根据题中条件可知:由f(k)≥k2,必能推得f(k+1)≥(k+1)2,但反之不成立,因为D中f(4)=25>42,故可推得k≥4时,f(k)≥k2,故只有D正确.
【答案】 D
2.用数学归纳法证明“对于任意x>0和正整数n,都有xn+xn-2+xn-4+…+++≥n+1”时,需验证的使命题成立的最小正整数值n0应为( )
A.n0=1 B.n0=2
C.n0=1,2 D.以上答案均不正确
【解析】 需验证:n0=1时,x+≥1+1成立.
【答案】 A
3.利用数学归纳法证明不等式1+++…+<f(n)(n≥2,n∈N+)的过程,由n=k到n=k+1时,左边增加了( )
【导学号:32750070】
A.1项 B.k项 C.2k-1项 D.2k项
【解析】 1+++…+-1+++…+=+++…+,
∴共增加2k项.
【答案】 D
4.若不等式++…+>对大于1的一切自然数n都成立,则自然数m的最大值为( )
A.12 B.13
C.14 D.不存在
【解析】 令f(n)=++…+,
易知f(n)是单调递增的,
∴f(n)的最小值为f(2)=+=.
依题意>,∴m<14.因此取m=13.
【答案】 B
5.用数学归纳法证明不等式++…+<(n≥2,n∈N+)的过程中,由n=k递
>
学业分层测评(十三) (建议用时:45分钟)
[学业达标]
一、选择题
1.设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.那么下列命题总成立的是( )
A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立
B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立
C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立
D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立
【解析】 根据题中条件可知:由f(k)≥k2,必能推得f(k+1)≥(k+1)2,但反之不成立,因为D中f(4)=25>42,故可推得k≥4时,f(k)≥k2,故只有D正确.
【答案】 D
2.用数学归纳法证明“对于任意x>0和正整数n,都有xn+xn-2+xn-4+…+++≥n+1”时,需验证的使命题成立的最小正整数值n0应为( )
A.n0=1 B.n0=2
C.n0=1,2 D.以上答案均不正确
【解析】 需验证:n0=1时,x+≥1+1成立.
【答案】 A
3.利用数学归纳法证明不等式1+++…+<f(n)(n≥2,n∈N+)的过程,由n=k到n=k+1时,左边增加了( )
【导学号:32750070】
A.1项 B.k项 C.2k-1项 D.2k项
【解析】 1+++…+-1+++…+=+++…+,
∴共增加2k项.
【答案】 D
4.若不等式++…+>对大于1的一切自然数n都成立,则自然数m的最大值为( )
A.12 B.13
C.14 D.不存在
【解析】 令f(n)=++…+,
易知f(n)是单调递增的,
∴f(n)的最小值为f(2)=+=.
依题意>,∴m<14.因此取m=13.
【答案】 B
5.用数学归纳法证明不等式++…+<(n≥2,n∈N+)的过程中,由n=k递
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式