:正弦定理的证明方法
:
>
三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,
因为AB+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
所以asinB=bsinA
3
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
>
显示更多