:九年级(上)第一章证明(二)单元测试卷1
:
第一章 证明(二)
(时间90分钟 满分100分)
一、选择题(每小题3分,共30分)
1、两个直角三角形全等的条件是( )
A、一锐角对应相等 B、两锐角对应相等 C、一条边对应相等 D、两条边对应相等
2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是( )
A、SAS B、ASA C、AAS D、SSS
3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( )
A、4 B、10 C、4或10 D、以上答案都不对
4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:
(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。其中结论正确的是( )
A、(1),(3) B、(2),(3) C、(3),(4) D、(1),(2),(4)
5、如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为( )
A、2 B、3 C、4 D、5
(第2题图) (第4题图) (第5题图)
6、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是( )
7、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为( )
A、4cm B、6cm C、8 cm D、10cm
8、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )
A、30° B、36° C、45° D、70°
9、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件可以是( )
A、BB′⊥AC B、BC=B′C C、∠ACB=∠ACB′ D、∠ABC=∠AB′C
(第7题图) (第8题图) (第9题图) (第10题图)
10、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则ABC的大小是( )
A、40° B、45° C、50° D、60°
二、填空题(每小题3分,共24分)
11、如果等腰三角形的一个底角是80°,那么顶角是 度.
12、如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件 .
(第12题图) (第13题图) (第15题图)
13、如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC。若∠B=20°,则∠C= °.
14、在△ABC中,AB=5cm,BC=6cm,BC边上的中线AD=4cm,则∠ADC的度数是 度.
15、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于D点,则∠BCD的度数为 .
16、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD∶DC=2∶1,BC=7.8cm,则D到AB的距离为 cm.
17、如图,在等腰直角三角形ABC中,AD⊥BC,PE⊥AB,PF⊥AC,则△DEF是
三角形.
18、如图,∠E=∠F=90°,∠B=∠C.AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。其中正确的结论是 (注:将你认为正确的结论都填上.)
(第16题图) (第17题图) (第18题图)
三、(每小题6分,共12分)
19、如图,在四个正方形拼接成的图形中,以A1、A2、A3、…、A10这十个点中任意三点为顶点,共能组成多少个等腰直角三角形?你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请简要写出你的探究过程
20、已知:菱形ABCD中(如图),∠A=72°,请设计三种不同的分法,将菱形ABCD分割成四个三角形,使得每个三角形都是等腰三角形.(画图工具不限,要求画出分割线段;标出能够说明分法所得三角形内角的度数,没有标出能够说明分法所得三角形内角度数不给分;不要求写出画法,不要求证明.)
注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.
分法一: 分法二: 分法三:
四、(每小题6分,共18分)
21、已知:如图,∠A=∠D=90°,AC=BD.
求证:OB=OC
22、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.
23、已知:如图,等腰梯形ABCD中, AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.
五、(每小题8分,共16分)
24、阅读下题及其证明过程:
已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
证明:在△AEB和△AEC中,
∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程。
25、如图1,点C为线段AB上一点,△ACM, △CBN是等边三角形,直线AN,MC交于点F。
(1)求证:AN=BM;
(2)求证: △CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)
>
九年级(上)单元测试卷第一章 证明(二)
(时间90分钟 满分100分)
一、选择题(每小题3分,共30分)
1、两个直角三角形全等的条件是( )
A、一锐角对应相等 B、两锐角对应相等 C、一条边对应相等 D、两条边对应相等
2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是( )
A、SAS B、ASA C、AAS D、SSS
3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( )
A、4 B、10 C、4或10 D、以上答案都不对
4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:
(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。其中结论正确的是( )
A、(1),(3) B、(2),(3) C、(3),(4) D、(1),(2),(4)
5、如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为( )
A、2 B、3 C、4 D、5
(第2题图) (第4题图) (第5题图)
6、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是( )
7、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为( )
A、4cm B、6cm C、8 cm D、10cm
8、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )
A、30° B、36° C、45° D、70°
9、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件可以是( )
A、BB′⊥AC B、BC=B′C C、∠ACB=∠ACB′ D、∠ABC=∠AB′C
(第7题图) (第8题图) (第9题图) (第10题图)
10、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则ABC的大小是( )
A、40° B、45° C、50° D、60°
二、填空题(每小题3分,共24分)
11、如果等腰三角形的一个底角是80°,那么顶角是 度.
12、如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件 .
(第12题图) (第13题图) (第15题图)
13、如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC。若∠B=20°,则∠C= °.
14、在△ABC中,AB=5cm,BC=6cm,BC边上的中线AD=4cm,则∠ADC的度数是 度.
15、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于D点,则∠BCD的度数为 .
16、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD∶DC=2∶1,BC=7.8cm,则D到AB的距离为 cm.
17、如图,在等腰直角三角形ABC中,AD⊥BC,PE⊥AB,PF⊥AC,则△DEF是
三角形.
18、如图,∠E=∠F=90°,∠B=∠C.AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。其中正确的结论是 (注:将你认为正确的结论都填上.)
(第16题图) (第17题图) (第18题图)
三、(每小题6分,共12分)
19、如图,在四个正方形拼接成的图形中,以A1、A2、A3、…、A10这十个点中任意三点为顶点,共能组成多少个等腰直角三角形?你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请简要写出你的探究过程
20、已知:菱形ABCD中(如图),∠A=72°,请设计三种不同的分法,将菱形ABCD分割成四个三角形,使得每个三角形都是等腰三角形.(画图工具不限,要求画出分割线段;标出能够说明分法所得三角形内角的度数,没有标出能够说明分法所得三角形内角度数不给分;不要求写出画法,不要求证明.)
注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.
分法一: 分法二: 分法三:
四、(每小题6分,共18分)
21、已知:如图,∠A=∠D=90°,AC=BD.
求证:OB=OC
22、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.
23、已知:如图,等腰梯形ABCD中, AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.
五、(每小题8分,共16分)
24、阅读下题及其证明过程:
已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
证明:在△AEB和△AEC中,
∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程。
25、如图1,点C为线段AB上一点,△ACM, △CBN是等边三角形,直线AN,MC交于点F。
(1)求证:AN=BM;
(2)求证: △CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式