:3.2立体几何中的向量方法(一)课件

:
>
§3.2 立体几何中的向量方法(一) 空间向量与平行关系 学习目标 1.掌握空间点、线、面的向量表示. 2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量. 3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题. 思考  怎样用向量来表示点、直线、平面在空间中的位置? (1)点:在空间中,我们取一定点O作为基点,那么空间中任意一点P的位置就可以用向量 来表示.我们把向量 称为点P的位置向量. (2)直线:①直线的方向向量:和这条直线平行或共线的非零向量. ②对于直线l上的任一点P,存在实数t,使得 此方程称为直线的向量参数方程. (3)平面:①空间中平面α的位置可以由α内两条相交直线来确定.对于平面α上的任一点P,a,b是平面α内两个不共线向量,则存在有序实数对(x,y),使得 =xa+yb. ②空间中平面α的位置还可以用垂直于平面的直线的方向向量表示.
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式


上一篇: 3.1.4空间向量的正交分解及其坐标表示课件

下一篇: 3.2立体几何中的向量方法(三)课件

最新文章

热门文章

闽ICP备12022453号-17

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com