:第1课时_二次函数y=ax2、bx、c的图象和性质

:
>

22.1.4 二次函数y=ax2+bx+c的图象和性质
第1课时 二次函数y=ax2+bx+c的图象和性质

1.会画二次函数y=ax2+bx+c的图象.
2.熟记二次函数y=ax2+bx+c的顶点坐标与对称轴公式.
3.用配方法求二次函数y=ax2+bx+c的顶点坐标与对称轴.
                   


一、情境导入

火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以近似用h=-5t2+150t+10表示.那么经过多长时间,火箭达到它的最高点?
二、合作探究
探究点一:二次函数y=ax2+bx+c的图象和性质
【类型一】二次函数图象的位置与系数符号互判

如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.
(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确的结论的序号是________;
(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是________.
解析:由抛物线开口向上,得a>0;由抛物线y轴的交点在负半轴上,得c<0;由抛物线的顶点在第四象限,得->0,又a>0,所以b<0;由抛物线与x轴交点的横坐标是1,得a+b+c=0.因此,第(1)问中正确的结论是①④.在第(1)问的基础上,由a>0、b<0、c<0,可得abc>0;由-<1、a>0,可得2a+b>0;由点(-1,2)在抛物线上,可知a-b+c=2,又a+b+c=0,两式相加得2a+2c=2,所以a+c=1;由a+c=1,c<0,可得a>1.因此,第(2)问中正确的结论是②③④.
方法总结:观察抛物线的位置确定符号的方法:①根据抛物线的开口方向可以确定a的符号.开口向上,a>0;开口向下,a<0.②根据顶点所在象限可以确定b的符号.顶点在第一、四象限,->0,由此得a、b异号;顶点在第二、三象限,-<0,由此得a、b同号.再由①中a的符号,即可确定b的符号.
【类型二】二次函数y=ax2+bx+c的性质
(2014·广西南宁)如图,已知二次
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档

文档为doc格式

标签: 二次函数

上一篇: 第1课时_二次函数y=ax2、k的图象和性质1

下一篇: 《二次函数》压轴题过关习题(有答案)

最新文章

热门文章

闽ICP备12022453号-17

快读网 轻松阅读 享受快乐生活

网站邮箱:wodd7@hotmail.com