:2019年高考文科数学真题(天津卷含解析)
2019年普通高等学校招生全国统一考试(天津卷)
文科数学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分共40分。
参考公式:
?如果事件A,B互斥,那么 .
?圆柱的体积公式 ,其中 表示圆柱的底面面积, 表示圆柱的高
?棱锥的体积公式 ,其中 表示棱锥的底面面积, 表示棱锥的高
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合 , , ,则
A. {2} B. {2,3} C. {-1,2,3} D. {1,2,3,4}
【答案】D
【解析】
【分析】
先求 ,再求 。
【详解】因为 ,
所以 .
故选D。
【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.
2.设变量 满足约束条件 ,则目标函数 的最大值为
A. 2 B. 3 C. 5 D. 6
【答案】D
【解析】
【分析】
画出可行域,用截距模型求最值。
【详解】已知不等式组表示的平面区域如图中的阴影部分。
目标函数的几何意义是直线 在 轴上的截距,
故目标函数在点 处取得最大值。
由 ,得 ,
所以 。
故选C。
【点
文档为doc格式