:林业遥感实习报告总结
5) ENVI图像处理软件决策树分类器建立逐级决策规则
6)决策规则的修改与添加(与实地调查进行比较分析)
7)利用建立的决策规则对林业遥感图像进行分类 保存分类规则与分类图像
三、 实习中涉及的理论知识
1. 决策树分类简介
与其它分类方法相比,决策树分类具有如下特点:1)决策树分类是非参数分类,因此其独立于训练区像元亮度值的统计分布模式;2)决策树分类时模型的输入既可以是连续的光谱波段值,也可以是离散的数值,甚至是定名变量;3)分类结束后可以生成易于解译的分类判别准则文件;4)样本训练的速度快,分类精度通常高于其它的分类器
2. 决策树分类原理
决策树分类实质是利用输入分类器的多元特征参数,从多角度挖掘出蕴藏在其中的模式类别间的差异,并建立起“特征识别矩阵”(类似于判读检索表),其外在表现为多个“If Then, else if then”的连用,就如同数学上的多个集合求交集运算,从而将满足交集条件的模式与不满足交集条件的模式区分开来,实现不同模式类别的自动识别。具体地讲,决策树可以像分类过程一样被定义,依据某种规则将窨数据集一级级往下细分以定义决策树的各个分支。决策树由一个根结点,一系列内部结点及终极结点组成,每一个结点只有一个父结点和两个或多个子结点。根据决策树的构成思想,以选定的样本数据为对象逐级找到分类树的结点,并且在每个结点上记录所选的空间数据图层的编号以及相应的判别函数参数,从而有可能反过来从树根到叶按照生成的判别规则,逐级地在每个结点上对样本数据以外的待分类数据进行分类
3. 本实习决策树分类规则描述
类1(class 1):NDVI值大于0.3,坡度大于或等于20度