:中考数学反比例函数与三角形综合题专训
:
一、反比例函数与等腰三角形结合
试题1、如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.
(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;
(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.
【解答】解:(1)k=4,S△PAB=15.
提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图1,
把x=4代入y=x,得到点B的坐标为(4,1),
把点B(4,1)代入y=,得k=4.
解方程组,得到点A的坐标为(﹣4,﹣1),
则点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP.
设直线AP的解析式为y=mx+n,
把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,
求得直线AP的解析式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
=OCAR+OCPS
=×3×4+×3×1=,
∴S△PAB=2S△AOP=15;
(2)过点P作PH⊥x轴于H,如图2.
B(4,1),则反比例函数解析式为y=,
设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,
联立,解得直线PA的方程为y=x+﹣1,
联立,解得直线PB的方程为y=﹣x++1,
∴M(m﹣4,0),N(m+4,0),
∴H(m,0),
∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,
∴MH=NH,
∴PH垂直平分MN,
∴PM=PN,
∴△PMN是等腰三角形;
(3)∠PAQ=∠
>
中考数学反比例函数与三角形综合题专训 一、反比例函数与等腰三角形结合
试题1、如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.
(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;
(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.
【解答】解:(1)k=4,S△PAB=15.
提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图1,
把x=4代入y=x,得到点B的坐标为(4,1),
把点B(4,1)代入y=,得k=4.
解方程组,得到点A的坐标为(﹣4,﹣1),
则点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP.
设直线AP的解析式为y=mx+n,
把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,
求得直线AP的解析式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
=OCAR+OCPS
=×3×4+×3×1=,
∴S△PAB=2S△AOP=15;
(2)过点P作PH⊥x轴于H,如图2.
B(4,1),则反比例函数解析式为y=,
设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,
联立,解得直线PA的方程为y=x+﹣1,
联立,解得直线PB的方程为y=﹣x++1,
∴M(m﹣4,0),N(m+4,0),
∴H(m,0),
∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,
∴MH=NH,
∴PH垂直平分MN,
∴PM=PN,
∴△PMN是等腰三角形;
(3)∠PAQ=∠
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式