:2020全国中考数学真题分类汇编:函数初步(含平面直角坐标系)
:
1.(2019·滨州)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )
A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)
【答案】A
【解析】点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到(1-2,-2+3),即B(-1,1).故选A.
2.(2019·广元)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
第8题图
【答案】A
【解析】点P在整个运动过程中,△PAD的底边AD始终不变,故面积的变化取决于AD边上高线的变化,当点P在AB上运动时,高线均匀变大,故面积也均匀变大,当点P在BC上运动时,由于BC∥AD,平行线间距离处处相等,故高线不变,∴面积也不发生改变,当点P在CD上运动时,高线又会均匀变小,故面积也会均匀变小,故选A.
3.(2019·绍兴 ) 若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于 ( )
A. -1 B. 0 C. 3 D. 4
【答案】C
【解析】设直线的解析式为y=kx+b(k≠0),A(1,4)、B(2,7),得,解得,得直线的解析式为y=3x+1,把点C(a,10)代入中,得a=3,故选C.
4.(2019·嘉兴)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OABC,再作图形OABC关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( )
A.(2,﹣1) B.(1,﹣2) C.(﹣2,1) D.(﹣2,﹣1)
【答案】A
【解析】 点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),
故选A.
5. (2019·杭
>
一、选择题 1.(2019·滨州)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )
A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)
【答案】A
【解析】点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到(1-2,-2+3),即B(-1,1).故选A.
2.(2019·广元)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
第8题图
【答案】A
【解析】点P在整个运动过程中,△PAD的底边AD始终不变,故面积的变化取决于AD边上高线的变化,当点P在AB上运动时,高线均匀变大,故面积也均匀变大,当点P在BC上运动时,由于BC∥AD,平行线间距离处处相等,故高线不变,∴面积也不发生改变,当点P在CD上运动时,高线又会均匀变小,故面积也会均匀变小,故选A.
3.(2019·绍兴 ) 若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于 ( )
A. -1 B. 0 C. 3 D. 4
【答案】C
【解析】设直线的解析式为y=kx+b(k≠0),A(1,4)、B(2,7),得,解得,得直线的解析式为y=3x+1,把点C(a,10)代入中,得a=3,故选C.
4.(2019·嘉兴)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OABC,再作图形OABC关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( )
A.(2,﹣1) B.(1,﹣2) C.(﹣2,1) D.(﹣2,﹣1)
【答案】A
【解析】 点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),
故选A.
5. (2019·杭
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式