:全国2019版中考数学复习提分专练四二次函数小综合试题
:
|类型1| 二次函数与方程(不等式)的综合
1.[2018·南京] 已知二次函数y=2(x-1)(x-m-3)(m为常数).
(1)求证:不论m为何值,该函数的图象与x轴总有公共点;
(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?
|类型2| 二次函数与直线的综合
2.[2018·苏州] 如图T4-1,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.
(1)求线段AD的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式.
图T4-1
|类型3| 二次函数与三角形的综合
3.[2018·枣庄] 如图T4-2①,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B,C,点C坐标为(8,0),连接AB,AC.
(1)请直接写出二次函数y=ax2+32x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;
(4)如图②,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求点N的坐标.
图T4-2
|类型4| 二次函数与平行四边形的综合
4.[2018·恩施] 如图T4-3,已知抛物线交x轴于A,B两点,交y轴于C点,A点坐标为(-1,0),OC=2,OB=3,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)P为坐标平面内一点,以B,C,D,P为顶点的四边形是平行四边形,求P点坐标.
>
提分专练(四) 二次函数小综合 |类型1| 二次函数与方程(不等式)的综合
1.[2018·南京] 已知二次函数y=2(x-1)(x-m-3)(m为常数).
(1)求证:不论m为何值,该函数的图象与x轴总有公共点;
(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?
|类型2| 二次函数与直线的综合
2.[2018·苏州] 如图T4-1,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.
(1)求线段AD的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式.
图T4-1
|类型3| 二次函数与三角形的综合
3.[2018·枣庄] 如图T4-2①,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B,C,点C坐标为(8,0),连接AB,AC.
(1)请直接写出二次函数y=ax2+32x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;
(4)如图②,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求点N的坐标.
图T4-2
|类型4| 二次函数与平行四边形的综合
4.[2018·恩施] 如图T4-3,已知抛物线交x轴于A,B两点,交y轴于C点,A点坐标为(-1,0),OC=2,OB=3,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)P为坐标平面内一点,以B,C,D,P为顶点的四边形是平行四边形,求P点坐标.
>
显示更多
以上内容为试读部分,更多内容请下载完整版文档查看
点击下载文档
文档为doc格式